Student working with Atomic Force microscope

Physics BSc (Hons) / MPhys (Hons)

Learn to question the impossible while studying fundamental physics alongside topics such as nano-materials and quantum information processes.

´óÏó´«Ã½ Connected Degree - 3 year course with 4th year placement

Key information

UCAS code:

FF33 (BSc) or F302 (MPhys)

Accreditation:

This course is Accredited

Typical offer:

112-120 points (BSc) / 120-128 points (MPhys), from 2 or 3 A levels or equivalent, to include a relevant subject

See full entry requirements
Study mode and duration
Start date

Showing content for section Overview

Overview

Advances in physics lead to new technologies that change our world and forge a path to a brighter future.

Quantum theory (the study of the subatomic) and the theory of relativity (that space and time are connected) challenge our imaginations. On this physics degree course, you'll uncover an amazing world that lies beyond what we can see. You'll learn to question the impossible and develop the confidence to push against the boundaries of what we think we know.

You'll have the opportunity to study topics including health physics, the fabrication of new bulk and nano-materials, and the application of fundamental quantum effects in the development of quantum information processes. You’ll graduate with strong mathematical, analytical, problem-solving and computational abilities that are in high demand.

BSc or MPhys?

You can study this course as a 3-year Bachelor's degree (BSc) or a 4-year integrated Master's degree (MPhys). The MPhys allows you to achieve a Master’s level degree with just one extra year of undergraduate study, further enhancing your career prospects.

Physics at the ´óÏó´«Ã½ is ranked 6th of all UK universities and the top modern university for research quality

Research Excellence Framework (REF) 2021

Read more about our outstanding physics research

Course highlights

  • See physics theory in practice through visits to companies such as BAE Systems, Airbus, QinetiQ, ´óÏó´«Ã½ Hospitals NHS Trust and others
  • Benefit from our links to industry through the ´óÏó´«Ã½ Physics Industry Advisory Board, a collection of professionals in relevant industries who help shape our course content, identify the skills employers want, teach on modules and offer placements
  • Have the chance to do an industrial-based research project under supervision of a leading physicist, such as researching physics for a defence company, working in radar for BAE Systems, or data engineering within the finance sector
  • Attend a programme of guest lectures on topics such as material sciences and quantum technology hosted by industry experts, including speakers from the medical physics department at Queen Alexandra Hospital
  • Investigate new technologies and theories alongside the University's physics research teams (and contribute to their work in your final project), whose research was ranked 6th in the UK for quality
  • Use advanced technical equipment with the help of expert technical staff, including x-ray diffraction, x-ray fluorescence, electron and atomic force microscopes, various types of spectroscopy and the SCIAMA supercomputer
IOP Institute of Physics logo stacked

94%

of graduates in work or further study 15 months after this course

(HESA Graduate Outcomes Survey 2021/22)

Top 30

for student satisfaction

(Times Higher Education, 2024)

Accreditation

This course is accredited by the .

As a supporter of the Institute of Physics Project Juno, we're committed to addressing the under-representation of women in physics and gender equality in higher education and research.

Portrait image of Claudia Maraston

Claudia Maraston, Professor of Astrophysics at the ´óÏó´«Ã½, features in Research.com's ranked list of physicists from around the world.

Read more

Clearing is open

This course is available through Clearing.

How to apply for accommodation

We have a variety of accommodation options, including studios, en-suites, catered, self-catered and private rental options. See how our housing team can help you find a place to call home.

Find out more

Clearing FAQs

To work out your UCAS points, use our UCAS Calculator to work out how many UCAS points you have.

The tariff calculator will allow you to see what grades you need to get into your preferred course at ´óÏó´«Ã½.

You can apply through Clearing if:

  • You don't meet the conditions of your offer for your firm (first) or insurance (second) choice courses
  • Your exam results are better than you expected and you want to change your course or university 
  • You don't hold any offers
  • You've accepted an offer but changed your mind about the course you want to do
  • You're applying for the first time after 30 June 2024 

After we make you an offer we'll send you a confirmation email. This email will let you know what you need to do next and it will tell you what you need to provide us. In some instances we may ask you to send us copies of certificates or you may need to send us a portfolio. 

If you've previously applied through UCAS you'll need to use your UCAS Hub to accept our offer by adding us as your Clearing choice. 

If you're having issues, please contact us on +44 (0)23 9284 8090 or admissions@port.ac.uk

Once you've accepted your Clearing course offer, we'll be in touch with details of available accommodation in the area. This will include our latest hall availability and support to find local rented accommodation via

See our accommodation page for more information. 

No, it's not too late and you should make your application for student finance as soon as possible. You don't have to wait for your results. You can make your application now and just amend it when you know where you're going to be.

If you've already applied for your student loan, you'll need to log into your account and update details about your new course/university. If you haven't applied for your student loan yet, don't panic. Apply today – it only takes 30 minutes.

Find out more in our Student finance for Clearing guide

If you're an EU or international student and you need a visa to study here, you need to start the process quickly as visas can take some time to come through. Get in touch with our visa support team if you have a question or problem.

See more on visa advice.

If you would like further information or guidance, please contact our international office or call our International Clearing Hotline on +44(0)23 9284 8785.

Entry requirements

BSc (Hons) Physics degree entry requirements

Typical offers

  • UCAS points - 112-120 points from 2 or 3 A levels, or equivalent, with 32 points from a relevant subject. (calculate your UCAS points)
  • A levels - BBB-BBC, with 32 points from a relevant subject.
    Relevant subjects: Physics; Mathematics; Further Mathematics; Statistics; Electronics.
  • BTECs (Extended Diplomas) - DDM-DMM
  • International Baccalaureate - 29

You may need to have studied specific subjects or GCSEs – .

English language requirements

  • English language proficiency at a minimum of IELTS band 6.0 with no component score below 5.5.

We also accept other standard English tests and qualifications, as long as they meet the minimum requirements of your course.

If you don't meet the English language requirements yet, you can achieve the level you need by successfully completing a pre-sessional English programme before you start your course.

If you don't meet the entry requirements, you may be able to join this course after you successfully complete a foundation year.

MPhys (Hons) Physics Master’s degree entry requirements

Typical offers

  • UCAS points - 120-128 points from 2 or 3 A levels, or equivalent, with 40 points from a relevant subject. (calculate your UCAS points)
  • A levels - ABB-BBB, with 40 points from a relevant subject.
    Relevant subjects: Physics; Mathematics; Further Mathematics; Statistics; Electronics.
  • BTECs (Extended Diplomas) - DDM  
  • International Baccalaureate - 29-30

You may need to have studied specific subjects or GCSEs – .

English language requirements

  • English language proficiency at a minimum of IELTS band 6.0 with no component score below 5.5.

We also accept other standard English tests and qualifications, as long as they meet the minimum requirements of your course.

If you don't meet the English language requirements yet, you can achieve the level you need by successfully completing a pre-sessional English programme before you start your course.

We look at more than just your grades

While we consider your grades when making an offer, we also carefully look at your circumstances and other factors to assess your potential. These include whether you live and work in the region and your personal and family circumstances which we assess using established data.

Passionate staff challenge me to be the best physicist I can which makes me confident that physics is the right career path for me.

James Michie, MPhys (Hons) Physics

Study Physics at the ´óÏó´«Ã½

Meet your staff, facilities and equipment

Get an introduction to Physics at ´óÏó´«Ã½ from Professor Daniel Thomas, Head of the School of Mathematics and Physics. Explore our facilities and equipment and discover more about your final year project.

Professor Daniel Thomas:

What really fascinates me most about university education is that right at the interface between research and teaching, newly created knowledge and skills are passed on directly to you, to the next generation.

The ´óÏó´«Ã½ gives us the right equipment and the right facilities to our physics students and to our physics staff to do exactly that.

Our physics students get to experience the laws of nature and physical concept first hand, to the lab modules in the first and second years. Cherie Morrison, our senior technician, will show you now a little bit of the experiments you are going to be doing in the first and the second year of your studies.

Cherie Morrison (Senior Technician):

This is the main physics room where we have our first and second year experiments. Behind me you can see the photoelectric effect, electron diffraction, hall effect.

We also have an experiment using LabView that will give you the skills that employers are looking for.

Here's the AFM that stands for atomic force microscopy. Here we can look at the topography of the surface. So that's what the surface looks like and how it has all these bumps and ridges but really, these features are only a few nanometres tall. You can see an image of my hair. My hair is only roughly 100 microns thick and this image is only 10 microns across. You can see all the scales, all the bumps and all the shapes on my hair.

Professor Daniel Thomas:

In our labs we've also got the MBE, which stands for Molecular Beam Epitexi and the plasma spluttering device. They are both high end cutting edge research devices that we use, in fact, for our research but we also use it for our teaching.

What we do with these devices is we are adding very thin films on surfaces and the thickness of this film is less than a nanometre. Think about it, less than a nanometre. It's just the size of an atom. So the device creates a vacuum less than deep space, 10 to the minus 10 million.

Doctor Samantha Penny:

This is our computer lab for our final year students to carry out their project work. So if you come and do an MPhys year with us, so you do the four year integrated master's degree, you get a chance to carry out a final year project. We have this lovely, dedicated computer room for you to do your project work in, so no competing with the other undergrads for your computer space.

In that project, you'll get to carry out all sorts of real research problems that real life astronomers or physicists are working on. So, for example, the kind of projects I'm offering this year, my students will be working with observational data sets from large cutting edge astronomical surveys.

They're going to be searching for supermassive black holes and galaxies. They're going to be working out why galaxies in really, really under dense, really sort of uncrowded regions of the universe, why they look different to galaxies in other parts of the universe as well.

And I'm also having a student who's going to look at how to communicate astronomy to anybody with a visual impairment. So a real range of projects you could get involved with if you come to ´óÏó´«Ã½. So we look forward to welcoming you to the ´óÏó´«Ã½ and I think you'll really enjoy your time here studying with us.

Professor Daniel Thomas:

The offices of our physics staff are located in the Dennis Sciama building right next to the labs. The Dennis Sciama Building also hosts the well renowned Institute of Cosmology and Gravitation that is well known for its world leading research in astrophysics and cosmology. When you study physics with us, you get the opportunity to work on exciting research projects together with our staff from the Institute of Cosmology and Gravitation in fields like astrophysics and cosmology.

Close to the Dennis Sciama Building and the labs is the Lion Gate Building, where we host the Technology and Learning Centre. That's a space for our physics students to meet, to learn or just to hang out. We also hold daily tutorials run by our mathematics and physics staff for our physics students so that they can ask any questions they may have about maths or physics.

We look forward to welcoming you at the ´óÏó´«Ã½ to discover the magic of physics with us.

Facilities and specialist equipment

Undergraduate Physics Laboratory

Learn through supervised, practice-based experiments such as electron diffraction and speed of light measurement, and learn to use LabVIEW, the same software the European Organisation for Nuclear Research uses to run the Large Hadron Collider. The attached Wave Synoptics Lab is a space for you to study mechanical and electromagnetic waves.

Male BAME scientist studying the Zeeman effect
Read more

Materials Coating Laboratory

Our lab contains a plasma sputtering machine, which 'spray paints' substrate surfaces with thin layers of film. 

Female physics student in laboratory
Explore lab

Quantum Optics Laboratory

Study and research quantum theory, mechanics and optics, using more than 30 microscopes and lasers, and a Mini Vibrating-sample Magnetometer

Students setting up lenses in Quantum Optics Laboratory
Read more

Nanomaterials Laboratory

A billionth of a metre in size, nanotechnology is changing the world. Our Nanomaterials Laboratory is at the centre of research into nanotechnologies.

SEM Chamber sample holder
Explore lab

Specialist physics equipment and software

You'll get access to industry standard equipment, including our SCIAMA supercomputer that can complete a billion calculations per second and simulate vast regions of the Universe. You'll also get to use exciting technologies including Molecular Beam Epitaxy (MBE), Atomic Force Microscopy (AFM) and Vibrating Sample Magnetometry (VSM).

Careers and opportunities

This physics degree will give you strong mathematical, analytical, problem-solving and computational abilities that are in high demand in sectors like financial services, aerospace development and publishing. Physics graduates are 5 years after graduation, while .

You'll have the chance to do an industrial-based research project under supervision of a leading physicist, such as IBM, Medical physics department in QA Hospital, Airbus, QinetiQ, working in radar for BAE Systems, or data engineering within the finance sector.

After the course you could also continue your studies to a PhD or other postgraduate qualification. Discover our world-leading physics research and Andrew's journey to a PhD in Physics.

Graduate destinations

Our graduates have worked for companies such as:

  • Burohappold Engineering
  • Tesla Engineering Ltd
  • British Telecom
  • Airbus
  • DSTL
  • BAE
  • Royal Bank of Canada
  • Diamond Light Source

What jobs can you do with a physics degree?

Our graduates now work in roles including:

  • data analyst
  • software engineer
  • project engineer
  • health physicist
  • physic researcher in defence sector

What areas can you work in with a physics degree?

You could apply your skills and knowledge in areas such as:

  • energy
  • medical instrumentation
  • defence
  • IT
  • scientific journalism
  • finance
  • aerospace
  • data science
  • data engineering
  • education
Female student at computer

Ongoing career support – up to 5 years after you graduate

Get experience while you study, with support to find part-time jobs, volunteering opportunities, and work experience.

Towards the end of your degree and for up to five years after graduation, you’ll receive one-to-one support from our Graduate Recruitment Consultancy to help you find your perfect role.

The opportunities granted to us at ´óÏó´«Ã½ provide the backbone that inspires us to succeed. I am comforted to know that my career could go anywhere from here; there really are no limits to where a physicist can go.

Patrick Rennie, Physics student

Placement year (optional)

Taking an optional placement year will give you the experience you need to increase your chances of landing your perfect role after graduation.

We'll give you all the support you need to find a placement that prepares you for your career, and we'll continue to mentor you throughout your placement.

You could also choose to set up your own business, or take a voluntary placement.

Potential roles

Previous students have taken placement roles such as:

  • science technician and classroom assistant
  • industrial placement estimating
  • technical industrial placement

Potential destinations

They've completed placements at organisations including:

  • CGI
  • Sandhurst School
  • BAE Systems
  • DSTL
  • IBM

You may be able to do a placement through the South East Physics Network (SEPnet) Bursary Scheme. This 8-week placement includes a £2000 bursary.

Physics Graduate James Michie, Assistant Engineer

Meet ´óÏó´«Ã½ physics graduate James Michie, now working as an Assistant Engineer. 

The universe is something that's always interested me.

It's always fascinated me.

I mean, the thing about my job is that I love problem-solving and using theoretical physics to find a practical solution.

The biggest sort of link between space and radar is more the processes to try and condense all the data and see the most out of the data and is obviously another application of all the physics I learnt.

I'm born and bred in ´óÏó´«Ã½, so at first I didn't actually plan on coming to ´óÏó´«Ã½.

I did actually want to go away from home.

I actually did a summer placement during my A Levels.

And when I met all the lecturers at the University and saw how passionate they were about actually teaching physics, I thought that's something that you weren't getting anywhere else.

So I thought, actually, this is where I'm going to get my best education and the most opportunities.

The lecturers were passionate about what they wanted to teach.

It's not just what they studied and what they research, but it was how they wanted to sort of teach the next generation.

The ´óÏó´«Ã½ was critical to giving me the opportunity to work at BAE through the Industry Advisory Board, and if it wasn't for them inviting me along and introducing me to members of industry, then I wouldn't have had the opportunities I have today.

Working a lot within the outreach, especially with the Institute of Cosmology and Gravitation, that really sort of, I think, boosted my confidence from being quite an introverted person, not really able to talk to people, to all of a sudden, you have to talk to people, you have to try and teach a little bit of physics to schoolchildren, to parents.

I think that really improved my communication skills.

I think I would describe my time at university as being life-changing.

Compared to what I was before I came to university and how I am now, the way that I developed so much through, you know, not just the degree itself, but all the extracurricular sort of society events, that's really developed me to who I am now.

BSc

MPhys

Modules

Each module on this course is worth a certain number of credits.

In each year, you need to study modules worth a total of 120 credits. For example, four modules worth 20 credits and one module worth 40 credits.

What you'll study

Core modules

You'll observe and analyse electric and magnetic circuits, recreate famous experimental setups, and calculate the behaviour of electromagnetic fields. On completion, you'll have a core foundation for ongoing physics study.

You'll develop career-building skills in applying these modern software packages to current mathematical problems, learning to implement algorithms, break problems into coded steps, visualise data, and further skills needed by companies employing mathematics and physics graduates.

You'll take on open-ended problems while learning to keep accurate records, allow for uncertainties and limitations, and assess limitations in your experimental procedures. With employability skills embedded in this module, you'll emerge with demonstrable skills in clear communication of science and professional laboratory practice.

In this module, you'll learn to recognise current and historical uses of physics in different fields - energy, astronomy, gravity, heat - and build on your learning through site visits, popular science articles and guest speakers. You'll also develop your ability to shift styles between public communication of science and a rigorous understanding of the underlying physics.

By studying mathematics and mechanics in parallel, you'll learn how to model physics problems and get approximate solutions. As you study scenarios from rockets to running, you'll see how your growing mathematical toolkit can apply to diverse phenomena. You'll gain proficiency in key techniques like derivatives, integrals, and statistics, as you build critical thinking skills crucial for independent analysis.

Building on your learning in calculus, linear algebra and modeling, you'll tackle problems in mechanics, gravitation and periodic motion. With matrices, hyperbolic functions and multiple integrations, you'll emerge from this module able to use maths as the fundamental language of physics research.

Core modules

You'll solve issues in electromagnetism, special relativity and quantum mechanics, using mathematical and computational methods to analyse physical systems. When you complete this module, you'll have the confidence to questioning established principles and emerge as an independent, cross-disciplinary thinker.

You'll perform calculations based on both classical thermodynamics and statistical mechanics, analyse the links between them, and discuss the limits thermodynamics puts on transforming heat into work.

You'll explore wave harmonics, the Doppler effect and resonance on one hand, and demonstrate interference and diffraction with optical systems on the other. On completion, you'll be ready to apply physics concepts to real-world issues.

You'll develop your understanding of physics at different scales, solve time-dependent and independent Schrödinger equations, and describe fundamental forces and Standard Model particle organization. When you complete this module, you'll be able to articulate modern ideas on the universe and the objects within it.

Through problem-based learning projects and hands-on lab investigations, you'll research, design, test and critically evaluate approaches to real-world scenarios, suggested by industry partners. You'll assess and mitigate risks, follow safety standards responsibly, and compare theoretical models against experimental data. You'll also gain career-focused skills in scientific writing, teamwork, and the confidence to lead in creative physical solutions.

Optional modules

Through lab sessions, you'll develop sophisticated programming techniques and model complex systems using both deterministic and stochastic methods. Tackle engaging examples from astrophysics and applied physics, learning how to analyse problems, formulate mathematical models, implement numerical solutions and visualize data. By the end of the module, you'll have the computational skills to model real-world physics systems, optimize code, and clearly present scientific results - preparing you for advanced research or industry.

First, you'll master analytical mechanics using Lagrangian and Hamiltonian techniques, reducing complex systems into simpler, symmetric forms. Then you'll analyse chaotic dynamics with differential and difference equations. When you complete the module, you'll have developed lasting intuition and problem-solving agility, with a versatile toolkit of theory and techniques essential for any physics career.

You'll investigate planetary motion, stars and galaxies through concepts including celestial coordinates, physical laws and gravity. As you model stellar properties and evolution, from atmospheres to remnants like black holes, you'll bring your analysis alive through interactive software, topical news and observing sessions.

Core modules

You'll account for the quantum behaviour of light and matter, evaluating quantum phenomena and underlying physics, and solve problems using Dirac notation. When you complete the module, you'll have a secure grasp of the quantum physics that inform new technologies and new understanding of atomic, optical and nuclear physics.

In this module, you'll apply classical and quantum mechanics approaches to bonding energy and crystal structures, magnetics properties and phonons. You'll analyse semiconductor properties, evaluate solid-state detectors, and compare benefits of solid state detectors. and critically discuss their applications.

Optional modules

In this module, you'll analyse 4-dimensional spacetime from Special Relativity, gaining skills in tensor algebra and calculus. You'll derive and apply Einstein's equations yourself, modeling black holes or gravitational waves, as you develop your skills in independent thinking, curiosity, and clear communication.

You'll explore emerging smart materials that can respond to stimuli like temperature, pressure and magnetic fields. By learning about their unprecedented capabilities, you gain key skills for innovating sensors, devices and systems. On completion of this module, you'll have gained relevant skills for working in this growing field of multiferroic material technologies.

You'll consider  the physics of stars, black holes and galaxies, and their formation mechanisms. To choose this module, you need to take the Mathematical Physics, and Introduction to Modern Physics and Astrophysics module.

When you complete this module successfully, you'll be able to:

  • Analyse fundamental physical processes in astrophysics, and apply them to the physics of stars, black holes and galaxies in multiple contexts
  • Apply the physics of gravitational collapse to solve problems related to the formation of stars and galaxies, and compact objects
  • Demonstrate your understanding of fundamental nuclear reactions and energetic balance, and evaluate the energetics of stars and galaxies
  • Demonstrate your understanding of the quest for dark matter in galaxy formation and evolution and evaluate the observational evidence

You'll investigate properties of objects at the nanometre scale using techniques like atomic force microscopy and scanning tunnelling microscopy, supported by relevant software. You'll also apply experimental data and elementary density functional theory to construct predictive models, and get familiar with the software used in cutting edge research.

You'll absorb the robust evidence supporting the Big Bang model in this module, while evaluating alternatives. Building on your independent and creative thinking skills, you'll apply thermodynamics and gravitational collapse physics to problems around structure formation, dark matter and more.

Adapting to the school environment, you'll explore STEM themes with classes from Key Stage 3 to Sixth Form, before reflecting critically on teaching practices. Through this mentorship of mathematics and physics teachers, you'll get direct experience of STEM education, break down stereotypes of mathematics, and prove your ability to communicate difficult concepts.

You'll work together to search literature, compare ideas and ethically gather data to investigate your chosen research topic. Ultimately, you'll defend your team's findings, demonstrate personal contributions, and create a strong example of your teamworking skills for future careers.

You'll explore the physical principles powering cutting-edge diagnostic and therapeutic techniques - from particle therapy and nuclear medicine to MRI and CT imaging. As you review and evaluate literature about health innovation, you'll develop the critical thinking and intellectual curiosity to question established ideas and seize opportunities in this growing field.

In this module, you'll model physical systems through vectors, matrices, differential equations and more. As you develop independent and creative problem-solving skills, you'll learn to apply the universal principles that underpin theoretical physics and scientific modeling.

In this module, you'll absorb the Standard Model's key concepts, tackle problems applying quantum mechanics and relativity, and grasp particle accelerator and detector technologies. When you complete the module, you'll have solid skills to probe nature's elementary constituents and interactions.

You'll choose a research question to explore, involving theory, experimentation or computation, with supervisory support from your lecturers. You'll define and investigate your research question, picking up skills in project planning and management, as you search literature, creatively develop hypotheses, and ethically gather data. Once you've produced your analysis, you'll professionally document and defend your project in written reports and posters, communicating a complete vision from proposals to conclusions.

Using freely available modern datasets, you'll learn to select and apply appropriate statistical techniques, using methods such as principal components and clustering. You'll also demonstrate your ability to apply statistical learning techniques in programming languages like R or Python.

Core modules

Our flexible approach allows you to gain expertise through hands-on lab work, field work and advanced modelling, supported by milestone meetings with your supervisor. You'll learn professional skills like rigorous uncertainty analysis, complex data handling, and critical literature review, and you'll learn to communicate your results professionally via posters, presentations and peer-reviewed papers. Our integrated support empowers you to steer an ambitious project from proposals to journal-standard results.

Optional modules

In this module, you'll absorb common algorithms, implementing them in computer models in contexts spanning advanced materials, astrophysics and cosmology contexts. Through your project work you'll assess models against observations, refine computational techniques, and suggest improvements to your models' limitations.

Develop integrated capabilities operating facilities like molecular beam epitaxy and plasma sputtering to create samples. Analyse with diffraction, spectroscopy, magnetometry and more, gaining intuitive insights on characterization. Then interpret rich data streams through modeling and simulation, validating theories and tackling open challenges around materials, nanotechnology and quantum systems. Our flexible research-led approach lets you pursue interests while learning to judiciously apply the power of experimental methods.

In this contemporary module, you'll tackle topics like black hole evaporation and early universe inflation with quantum field theory calculations. Developing your intellectual curiosity and analytical problem-solving skills, you'll emerge with versatile mathematical abilities to progress today's most exciting physics theories.

You'll study theoretical descriptions and mathematical models of stellar evolution, nuclear fusion, galaxy dynamics and more. Looking at topical news alongside scientific literature, you'll tackle current astronomical events, and learn how to transfer your knowledge to other systems and scenarios in the context spacetime's largest scales.

You'll handle real astronomical data as you learn about the telescopes and detectors that gathered the data you're using. You'll also apply contemporary statistical and computational methods, compare results to astrophysical models, and develop a deeper appreciation for the complexities of observing our Universe.

On this course, you can do an optional study abroad or work placement year between your 2nd and 3rd years, or after your third year, to get valuable experience working in industry.

We’ll help you secure a work placement that fits your situation and ambitions. You’ll get mentoring and support throughout the year.

Universe: Planetary System, Stars and Galaxies

Students, staff and partners from the Hampshire Astronomical Group explore what makes the Universe module special. 

Samantha Penny: This is part of a second year module called Universe: Planetary System, Stars and Galaxies. We get our maths and physics students together and see the science we're learning actually, in reality. 

Steve Broadbent: We've been in close partnership with the university for over 20 years now, and it offers the students an opportunity to use real equipment, which they don't get from lectures. 

Hannah Copley: It's really great that this is so near to the university that's such a great opportunity for us to take what we learn in lessons and actually practically do it for no extra cost. 

Samantha Penny: ´óÏó´«Ã½ is a really built up, dense environment. There's lots of light pollution, but we only have to come a little way out and we've got some of the darkest skies in Hampshire right on our doorstep. 

Steve Broadbent: We've got five domes with various telescopes. The star attraction is a research grade 24-inch reflecting telescope. 

Hannah Copley: We study the universe, planets, stars, galaxies so that's definitely going to help in my end of year exams coming up. 

Ahmed Yahya: It's incredible to have these facilities in ´óÏó´«Ã½. It's an amazing opportunity that I am glad I didn't skip on. 

Samantha Penny: We combine the observatory visit with a visit to the nearby planetarium in Chichester, so the South Downs Planetarium. 

Sarah Brown: Tonight we've been looking at sunspots and all of the emissions from the sun, which has been epic. 

Samantha Penny: Despite being our closest star. I think there's so few people who actually have looked at the sun in detail, combining those lectures with trips to the observatory, seeing these things for themselves, I think really, really helps the students. 

Sarah Brown: I'm very glad I took this module because it's been really interesting. I've learned an awful lot. It's been a great experience. 

Hannah Copley: I think it's given me a big insight into after university the sort of things you can go into. 

Ahmed Yahya: It's amazing to see it with other people that have seen it so many times. The look in their eyes when you see it and start noticing things that they've seen a thousand times really made it something special. 

Changes to course content

We use the best and most current research and professional practice alongside feedback from our students to make sure course content is relevant to your future career or further studies.

Therefore, some course content may change over time to reflect changes in the discipline or industry. If a module doesn't run, we'll let you know as soon as possible and help you choose an alternative module.

Teaching

Teaching methods on this course include:

  • lectures
  • practical work
  • field work
  • seminars
  • workshops
  • projects

The focus of teaching on this course is on active learning, so you'll have the practical skills you need to succeed in your career.

Term dates

The academic year runs from September to June. There are breaks at Christmas and Easter.

See term dates

How you're assessed

You’ll be assessed through:

  • coursework
  • practical work (both laboratory and field based)
  • presentations
  • production of posters and portfolios
  • a research based final-year project

You’ll be able to test your skills and knowledge informally before you do assessments that count towards your final mark.

You can get feedback on all practice and formal assessments so you can improve in the future.

Supporting you

The amount of timetabled teaching you'll get on your degree might be less than what you're used to at school or college, but you'll also get support via video, phone and face-to-face from teaching and support staff to enhance your learning experience and help you succeed. You can build your personalised network of support from the following people and services:

Types of support

Your personal tutor helps you make the transition to independent study and gives you academic and personal support throughout your time at university.

As well as regular scheduled meetings with your personal tutor, they're also available at set times during the week if you want to chat with them about anything that can't wait until your next meeting.

You'll have help from a team of faculty learning support tutors. They can help you improve and develop your academic skills and support you in any area of your study in one-on-one and group sessions.

They can help you:

  • master the mathematics skills you need to excel on your course
  • understand engineering principles and how to apply them in any engineering discipline
  • solve computing problems relevant to your course
  • develop your knowledge of computer programming concepts and methods relevant to your course
  • understand and use assignment feedback

All our labs and practical spaces are staffed by qualified laboratory support staff. They’ll support you in scheduled lab sessions and can give you one-to-one help when you do practical research projects.

During term time, Faculty Academic Skills Tutors (AST) are available for bookable 1-to-1 sessions, small group sessions and online sessions. These sessions are tailored to your needs.

Support is available for skills including:

  • University study
  • Getting into the right study mindset
  • Note-taking and note-making skills
  • Referencing
  • Presentation skills
  • Time management, planning, and goal setting
  • Critical thinking
  • Avoiding plagiarism

If you have a disability or need extra support, the Additional Support and Disability Centre (ASDAC) will give you help, support and advice.

Our online  will help you plan for managing the challenges of learning and student life, so you can fulfil your potential and have a great student experience.

You can get personal, emotional and mental health support from our Student Wellbeing Service, in person and online. This includes 1–2–1 support as well as courses and workshops that help you better manage stress, anxiety or depression.

If you require extra support because of a disability or additional learning need our specialist team can help you.

They'll help you to

  • discuss and agree on reasonable adjustments
  • liaise with other University services and facilities, such as the library
  • access specialist study skills and strategies tutors, and assistive technology tutors, on a 1-to-1 basis or in groups
  • liaise with external services

Library staff are available in person or by email, phone, or online chat to help you make the most of the University’s library resources. You can also request one-to-one appointments and get support from a librarian who specialises in your subject area.

The library is open 24 hours a day, every day, in term time.

The Maths Cafe offers advice and assistance with mathematical skills in a friendly, informal environment. You can come to our daily drop-in sessions, develop your mathematics skills at a workshop or use our online resources.

If English isn't your first language, you can do one of our English language courses to improve your written and spoken English language skills before starting your degree. Once you're here, you can take part in our free In-Sessional English (ISE) programme to improve your English further.

​Costs and funding

Tuition fees

  • UK/Channel Islands and Isle of Man students – £9,535 per year (may be subject to annual increase)
  • EU students – £9,535 a year (including Transition Scholarship â€“ may be subject to annual increase)
  • International students – £19,200 per year (subject to annual increase)

Funding your studies

Find out how to fund your studies, including the scholarships and bursaries you could get. You can also find more about tuition fees and living costs, including what your tuition fees cover.

Applying from outside the UK? Find out about funding options for international students.

Additional course costs

These course-related costs aren’t included in the tuition fees. So you’ll need to budget for them when you plan your spending.

Additional costs

Our accommodation section show your accommodation options and highlight how much it costs to live in ´óÏó´«Ã½.

You’ll study up to 6 modules a year. You may have to read several recommended books or textbooks for each module.

You can borrow most of these from the Library. If you buy these, they may cost up to £60 each.

We recommend that you budget £75 a year for photocopying, memory sticks, DVDs and CDs, printing charges, binding and specialist printing.

 

If your final year includes a major project, there could be cost for transport or accommodation related to your research activities. The amount will depend on the project you choose.

The cost of travel or accommodation associated with compulsory fieldwork is included in the course fee. You will be expected to pay for meals and other subsistence costs associated with compulsory fieldwork.

During your placement year or study abroad year, you’ll be eligible for a discounted rate on your tuition fees. Currently, tuition fees for that year are:

  • UK/Channel Islands and Isle of Man students – £1,385 a year (may be subject to annual increase)
  • EU students – £1,385 a year, including Transition Scholarship (may be subject to annual increase)
  • International students – £2,875  a year (subject to annual increase)

The costs associated with your specific destination will be discussed during your second year, as well as possible sources of additional funding.

Apply

Ready to apply?

To start this course in 2025, apply through UCAS. You'll need:

  • the UCAS course code – FF33 (BSc) or F302 (MPhys)
  • our institution code – P80

If you'd prefer to apply directly, use our online application form:

You can also sign up to an Open Day to:

  • Tour our campus, facilities and halls of residence
  • Speak with lecturers and chat with our students
  • Get information about where to live, how to fund your studies and which clubs and societies to join

If you're new to the application process, read our guide on applying for an undergraduate course.

Applying from outside the UK

As an international student you'll apply using the same process as UK students, but you’ll need to consider a few extra things. 

You can get an agent to help with your application. Check your country page for details of agents in your region.

Find out what additional information you need in our international students section

If you don't meet the English language requirements for this course yet, you can achieve the level you need by successfully completing a pre-sessional English programme before you start your course.

Admissions terms and conditions

When you accept an offer to study at the ´óÏó´«Ã½, you also agree to abide by our Student Contract (which includes the University's relevant policies, rules and regulations). You should read and consider these before you apply.

Contact information

Admissions

+44 (0) 23 9284 5566

Contact Admissions